| Both sides previous revisionPrevious revisionNext revision | Previous revision |
| en:multiasm:papc:chapter_6_1 [2025/04/10 12:42] – [Core Processors] ktokarz | en:multiasm:papc:chapter_6_1 [2025/04/11 05:46] (current) – [Pentium 4] ktokarz |
|---|
| Pentium III is very similar to Pentium II. The main enhancement is the addition of the Streaming SIMD Extensions (SSE) instruction set to accelerate SIMD floating point calculations. Due to the enhancement of the production process, it was also possible to increase the clocking frequency to the range of 400 MHz to 1.4 GHz. | Pentium III is very similar to Pentium II. The main enhancement is the addition of the Streaming SIMD Extensions (SSE) instruction set to accelerate SIMD floating point calculations. Due to the enhancement of the production process, it was also possible to increase the clocking frequency to the range of 400 MHz to 1.4 GHz. |
| ===== Pentium 4 ===== | ===== Pentium 4 ===== |
| Pentium 4 is the last 32-bit processor developed by Intel. Some late models also implement 64-bit enhancement. It is based on NetBurst architecture, which was developed as an improvement to P6 architecture. The important modification is a movement of the instruction cache from the input to the output of the instruction decoder. As a result, the cache, named trace cache, stores micro-operations instead of instructions. To increase the market impact, Intel decided to enlarge the number of pipeline stages, using the term "hyperpipelining" to describe the strategy of creating a very deep pipeline. Deep pipeline could lead to higher clock speeds and was used by Intel to build the marketing strategy. The Pentium 4's pipeline in the initial model is significantly deeper than that of its predecessors, having 20 stages. The Pentium 4 Prescott processor even has a pipeline of 31 stages. Operating frequency ranges from 1.3 GHz to 3.8 GHz. Intel also implemented in the Pentium 4 HT version, the Hyper Threading technology to enable two virtual (logical) cores in one physical processor, which share the workload between them when possible. NetBurst architecture suffered from high heat emission, causing problems in heat dissipation and cooling. With Pentium 4, Intel returned to the single chip package for both the processor core and L2 cache. Pentium 4 extends the instruction set with SSE instructions, and Pentium 4 Prescott with SSE3. | Pentium 4 is the last 32-bit processor developed by Intel. Some late models also implement 64-bit enhancement. It is based on NetBurst architecture, which was developed as an improvement to P6 architecture. The important modification is a movement of the instruction cache from the input to the output of the instruction decoder. As a result, the cache, named trace cache, stores micro-operations instead of instructions. To increase the market impact, Intel decided to enlarge the number of pipeline stages, using the term "hyperpipelining" to describe the strategy of creating a very deep pipeline. A deep pipeline could lead to higher clock speeds, and Intel used it to build the marketing strategy. The Pentium 4's pipeline in the initial model is significantly deeper than that of its predecessors, having 20 stages. The Pentium 4 Prescott processor even has a pipeline of 31 stages. Operating frequency ranges from 1.3 GHz to 3.8 GHz. Intel also implemented the Hyper Threading technology in the Pentium 4 HT version to enable two virtual (logical) cores in one physical processor, which share the workload between them when possible. With Pentium 4, Intel returned to the single chip package for both the processor core and L2 cache. Pentium 4 extends the instruction set with SSE2 instructions, and Pentium 4 Prescott with SSE3. NetBurst architecture suffered from high heat emission, causing problems in heat dissipation and cooling. |
| |
| ===== AMD Opteron ===== | ===== AMD Opteron ===== |
| ===== Core Processors ===== | ===== Core Processors ===== |
| * Pentium Dual Core. | * Pentium Dual Core. |
| After facing problems with heat dissipation in processors based on the NetBurst microarchitecture, Intel designed the Core microarchitecture, derived from P6. One of the first implementations is Pentium Dual-Core. After some time, Intel changed the name of this processor line back to Pentium to avoid confusion with Core and Core 2 processors. There is a vast range of Core processors models with different sizes of cache, numbers of cores, offering lower or higher performance. From the perspective of this book, we can think of them as modern, advanced and efficient 64-bit processors, implementing all instructions which we consider. There are many internet sources where additional information can be found. One of them is the Intel website(https://www.intel.com/content/www/us/en/products/details/processors.html), and another commonly used is Wikipedia(https://en.wikipedia.org/wiki/X86). | After facing problems with heat dissipation in processors based on the NetBurst microarchitecture, Intel designed the Core microarchitecture, derived from P6. One of the first implementations is Pentium Dual-Core. After some time, Intel changed the name of this processor line back to Pentium to avoid confusion with Core and Core 2 processors. There is a vast range of Core processors models with different sizes of cache, numbers of cores, offering lower or higher performance. From the perspective of this book, we can think of them as modern, advanced and efficient 64-bit processors, implementing all instructions which we consider. There are many internet sources where additional information can be found. One of them is the Intel website((https://www.intel.com/content/www/us/en/products/details/processors.html)), and another commonly used is Wikipedia((https://en.wikipedia.org/wiki/X86)). |
| * Core | * Core |
| All Intel Core processors are based on the Core microarchitecture. Intel uses different naming schemas for these processors. Initially, the names represented the number of physical processor cores in one chip; Core Duo has two physical processors, while Core Quad has four. | All Intel Core processors are based on the Core microarchitecture. Intel uses different naming schemas for these processors. Initially, the names represented the number of physical processor cores in one chip; Core Duo has two physical processors, while Core Quad has four. |