Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
en:safeav:hmc:vvhmi [2025/10/20 19:01] raivo.sellen:safeav:hmc:vvhmi [2025/10/20 19:26] (current) raivo.sell
Line 4: Line 4:
 <todo @raivo.sell></todo> <todo @raivo.sell></todo>
  
-testing methods for HMI (user experience trials, V&metrics, simulation of user perceptionetc.).+ 
 +====== 7.5 Verification and Validation of HMI ====== 
 + 
 +Verification and Validation (V&V) of Human–Machine Interfaces (HMI) in autonomous vehicles ensure that communication between humans and intelligent systems is safeintuitive, and consistent.   
 +While functional safety standards focus on the correct operation of sensors and control logic, HMI validation extends this to **human comprehension, usability, and behavioral response** [1–3]. 
 + 
 +===== Objectives of HMI Validation ===== 
 +The goal of HMI V&is to confirm that: 
 +  * Users correctly interpret the information and cues provided by the vehicle.   
 +  * System feedback supports timely and safe human reactions.   
 +  * Communication remains effective under diverse environments and user conditions.   
 + 
 +The validation process therefore combines *technical testing* with *human-centered evaluation*. 
 + 
 +===== Verification Methods ===== 
 +Verification addresses whether the interface behaves as intended.   
 +Typical methods include: 
 +  * **Simulation-based testing** – verification of visualaudio, and tactile signals within virtual driving scenarios.   
 +  * **Scenario-based validation** – predefined interaction cases between AVs and pedestrians or passengers tested systematically.   
 +  * **Software-in-the-loop (SIL) / Hardware-in-the-loop (HIL)** – to evaluate timing and synchronization of multimodal feedback.   
 +  * **Failure mode testing** – analysis of degraded communication (e.g., light or network failure) and fallback behavior [2]. 
 + 
 +Verification ensures consistency, latency limits, and redundancy across modalities before any user testing is performed. 
 + 
 +===== Human-in-the-Loop Evaluation ===== 
 +Validation focuses on how people actually experience and understand the interface.   
 +This involves iterative testing with human participants in controlled and real-world environments [1–3].   
 +Approaches include: 
 +  * **Usability studies** – measurement of comprehension time, task completion, and error rate.   
 +  * **Eye-tracking and physiological monitoring** – assessing attention and cognitive workload.   
 +  * **Questionnaires and interviews** – evaluating perceived safety, clarity, and trust.   
 + 
 +Results are analyzed to refine signal patterns, color codes, and message phrasing to improve intuitiveness and reduce confusion. 
 + 
 +===== Simulation and Virtual Prototyping ===== 
 +High-fidelity simulation environments enable early-stage evaluation of HMI without physical prototypes.   
 +Tools integrate virtual pedestrians, lighting, and weather to test how design choices influence visibility and legibility [3].   
 +Virtual validation supports: 
 +  * Rapid comparison of alternative communication concepts.   
 +  * Testing rare or hazardous scenarios ethically.   
 +  * Correlating behavioral metrics with simulated responses.   
 + 
 +These techniques shorten development cycles and allow data-driven interface improvement. 
 + 
 +===== Metrics and Performance Indicators ===== 
 +To make validation reproducible, quantitative metrics are defined, such as: 
 +  * **Comprehension rate (% of participants interpreting cues correctly).**   
 +  * **Reaction latency (time to respond to a signal).**   
 +  * **Confidence index (subjective trust level).**   
 +  * **Error frequency (number of misinterpretations per test run).** 
 + 
 +Standardized metrics enable benchmarking across projects and support regulatory assessment of AV communication readiness. 
 + 
 +===== Towards Continuous Validation ===== 
 +HMI validation does not end with prototype testing.   
 +Field data from pilot deployments provide valuable feedback loops for ongoing improvement [2].   
 +By combining simulation, real-world performance, and user analyticsHMI systems evolve continuously as technology and user expectations mature. 
 + 
 +{{:en:safeav:hmc:hmi_validation_process.png?500| Example of iterative HMI Verification and Validation process from concept to field testing.}} 
 + 
 +===== Summary ===== 
 +Effective verification and validation bridge the gap between technical functionality and human understanding.   
 +By ensuring that communication is accurate, interpretable, and trusted, these processes contribute directly to the safe and responsible deployment of autonomous mobility [1–3]. 
 + 
 +---- 
 + 
 +**References:** 
 +[1] Razdan, R. et al. (2020). *Unsettled Topics Concerning Human and Autonomous Vehicle Interaction.* SAE EDGE Research Report EPR2020025.   
 + 
 +[2] Kalda, K., Sell, R., Soe, R.-M. (2021). *Use Case of Autonomous Vehicle Shuttle and Passenger Acceptance.* Proc. Estonian Academy of Sciences, 70 (4).  
 +  
 +[3] Kalda, K., Pizzagalli, S.-L., Soe, R.-M., Sell, R., Bellone, M. (2022). *Language of Driving for Autonomous Vehicles.* Applied Sciences, 12 (11). 
 + 
en/safeav/hmc/vvhmi.1760986899.txt.gz · Last modified: 2025/10/20 19:01 by raivo.sell
CC Attribution-Share Alike 4.0 International
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0