Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
en:safeav:curriculum:softsys-m [2025/09/24 13:31] – created larisasen:safeav:curriculum:softsys-m [2025/11/05 09:15] (current) airi
Line 1: Line 1:
-====== Module:  Software Systems and Middleware (Part 2) ====== +====== Module: Software Systems and Middleware (Part 2) ====== 
-**Study level**                 | Bachelor 1                                                                                                                                                || + 
-**ECTS credits**                | 3-6                                                                                                                                                       || +**Study level** | Master 
-**Study forms**                 | Hybrid or fully online                                                                                                                                    |+**ECTS credits** | 1 ECTS 
-**Module aims**                 | to be added                                                                                                                                               |+**Study forms** | Hybrid or fully online | 
-**Pre-requirements**            Motivation to study AVrecommended to have basics on programming, electronics and mechatronics                                                           |+**Module aims** | The aim of the module is to introduce software verification, validation and testing methods for autonomous, cyber-physical and AI-based systems. The course develops students’ ability to plan, implement and assess V&V strategies across physics-based and data-driven software, in line with relevant safety and governance standards. 
-**Learning outcomes**           After completing this module (for every topic listed below), the student:\\  knows x\\  knows y\\  understands z\\  can w                         |+**Pre-requirements** | Basic knowledge of software engineeringcontrol or embedded systems and programming skills. Familiarity with system designtesting methodologies, AI/ML concepts or safety-related standards is recommended but not mandatory. 
-** Topics **                    __Topic AV1 __ (ECTS) \\ \\ __Topic AV2 __ (ECTS)) \\ \\ __Topic AV3 __ (2 ECTS)\\ \\ __Topic AV4 __ (1 ECTS) \\                                      |+**Learning outcomes** | **Knowledge**\\ • Explain the principles of V&V in both physics-based and decision-based execution systems.\\ • Describe software testing frameworks, including component, integration, and system-level approaches.\\ • Understand regulatory standards and their role in defining safety and assurance levels.\\ • Analyze challenges in AI component validation, including training set verification, robustness testing, and anti-specification frameworks.\\ **Skills**\\ • Develop and execute structured test plans and coverage analyses for complex, data-driven systems.\\ • Use simulation tools to generate and evaluate test scenarios for AI-based and safety-critical applications.\\ • Apply V&V techniques to assess software reliability and traceability across development lifecycles.\\ • Critically evaluate AI model performance using robustness, fairness, and explainability metrics.\\ **Understanding**\\ • Appreciate the philosophical and practical differences between deterministic and non-deterministic testing paradigms.\\ • Recognize the ethical and governance implications of AI deployment in safety-critical systems.\\ • Demonstrate interdisciplinary reasoning across engineering, regulatory, and societal domains when designing and testing autonomous software systems. 
-**Type of assessment**          | The prerequisite of a positive grade is a positive evaluation of module topics and presentation of practical work results with required documentation     |+**Topics** | 1. Verification and Validation Fundamentals:\\    – Overview of PBE vs DBE paradigms, fault analysis, and safety argument structures.\\    – Introduction to structured testing: unit, integration, and system-level testing.\\ 2. Safety-Critical Standards and Governance:\\    – ISO 26262 (Automotive), AS9100 (Aerospace), and CMMI frameworks.\\    – Automotive Safety Integrity Levels and Design Assurance Levels.\\ 3. Software Testing and Coverage:\\    – Code coverage, pseudo-random test generation, and scenario-based validation.\\    – Role of simulation, fault injection, and test automation.\\ 4. AI Component Validation:\\    – AI vs Software validation differences; coverage, code review, and data governance.\\    – Training set validation, robustness to noise, and explainable AI.\\ 5. Specification and Anti-Specification Challenges:\\    – IEEE 2846 and AI driver concepts; ethical, legal, and liability considerations.\\    – Human-equivalent testing and performance evaluation frameworks.\\ 6. Emerging V&V Trends:\\    – Continuous integration, simulation-in-the-loop, and AI-assisted verification.\\    – Case studies: Automotive ADAS, aviation autonomy, and robotics. 
-**Learning methods**            | to be added                                                                                                                                               || +**Type of assessment** | The prerequisite of a positive grade is a positive evaluation of module topics and presentation of practical work results with required documentation
-| **AI involvement**              | Explicit list of AI tools and application mtehods                                                                                                      |   | +**Learning methods** | **Lecture** — Present theoretical underpinnings of software and AI testing, covering safety-critical standards and AI V&V challenges.\\ **Lab works** — Practical exercises in automated testing, simulation-driven validation, and robustness evaluation using Python/ROS/MATLAB.\\ **Individual assignments** — Develop and analyze test strategies, evaluate compliance with ISO/IEEE frameworks, and submit technical reports.\\ **Self-learning** — Review international standards, research literature, and case studies of AI validation in autonomous domains. | 
-**References to\\ literature**  | to be added                                                                                                                                               || +^ **AI involvement** | AI tools can assist in generating test cases, simulating complex operational scenarios, and analyzing coverage gaps. Students must validate AI-generated results, maintain traceability, and document AI involvement transparently in compliance with academic ethics. 
-**Lab equipment**               | to be added                                                                                                                                               || +**Recommended tools and environments** | ROS, MATLAB 
-**Virtual lab**                 | to be added                                                                                                                                               || +**Verification and Validation focus** |  
-**MOOC course**                 MOOC Courses hosting for SafeAVIOT-OPEN.EU Reloadedand Multiasm grants: http://edu.iot-open.eu/course/index.php?categoryid=3                          ||+**Relevant standards and regulatory frameworks** | ISO 26262AS9100CMMI, IEEE 2846 |
  
en/safeav/curriculum/softsys-m.1758720705.txt.gz · Last modified: 2025/09/24 13:31 by larisas
CC Attribution-Share Alike 4.0 International
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0