Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
en:safeav:curriculum:softsys-b [2025/09/24 13:25] – created larisasen:safeav:curriculum:softsys-b [2025/11/05 09:03] (current) airi
Line 1: Line 1:
-====== Module: Control, Planning, and Decision-Making (Part1) ====== +====== Module: Software Systems and Middleware (Part 1) ====== 
-**Study level**                 | Bachelor 1                                                                                                                                                |+ 
-**ECTS credits**                | 3-6                                                                                                                                                       || +**Study level** | Bachelor | 
-**Study forms**                 | Hybrid or fully online                                                                                                                                    |+**ECTS credits** | 1 ECTS 
-**Module aims**                 | to be added                                                                                                                                               |+**Study forms** | Hybrid or fully online | 
-**Pre-requirements**            Motivation to study AV, recommended to have basics on programming, electronics and mechatronics                                                           |+**Module aims** | The aim of the module is to introduce software architectures, middleware and lifecycle management for cyber-physical and autonomous systems. The course develops students’ understanding of how multi-layer autonomy stacks support reliable sensing, perception, planning and control under real-time, interoperability and safety constraints. 
-**Learning outcomes**           After completing this module (for every topic listed below)the student:\\  knows x\\  - knows y\\  - understands z\\  can w                         |+**Pre-requirements** | Basic programming skills and understanding of operating systemscomputer networks and data structures. Familiarity with embedded or control systems and Linux-based development tools is recommended. 
-** Topics **                    __Topic AV1 __ (ECTS) \\ \\ __Topic AV2 __ (ECTS)) \\ \\ __Topic AV3 __ (2 ECTS)\\ \\ __Topic AV4 __ (1 ECTS) \\                                      |+**Learning outcomes** | **Knowledge**\\ • Explain the architecture and purpose of multi-layered autonomy software stacks.\\ • Describe middleware technologies and their role in deterministic data exchange.\\ • Identify lifecycle models and configuration management practices for autonomous software.\\ **Skills**\\ • Design modular autonomy software architectures integrating perceptionlocalisation, planning, and control modules.\\ • Configure and deploy middleware frameworks to support real-time, distributed communication.\\ • Apply CI/CD and configuration management principles and orchestration tools.\\ **Understanding**\\ • Evaluate safety, verification, and cybersecurity aspects of autonomy software systems.\\ • Recognize challenges in maintainability, scalability, and interoperability across heterogeneous systems.\\ • Appreciate ethical, reliable, and transparent AI integration in autonomous decision-making. 
-**Type of assessment**          | The prerequisite of a positive grade is a positive evaluation of module topics and presentation of practical work results with required documentation     |+**Topics** | 1. Introduction to Autonomy Software Stacks:\\    – Functional layers: perception, localisation, planning, control, middleware, cloud.\\    – Characteristics: real-time behaviour, determinism, scalability, resilience, interoperability.\\ 2. Middleware and Communication Frameworks:\\    – DDS, ROS2, MQTT, AUTOSAR Adaptive, CAN, Ethernet.\\    – Quality of Service, message scheduling, fault tolerance.\\ 3. Software Lifecycle and Configuration Management:\\    – Lifecycle models (Waterfall, V-Model, Agile, DevOps, Spiral).\\    – Configuration management, version control, CI/CD pipelines, baselines.\\ 4. Development and Maintenance Challenges:\\    – Real-time performance, safety, AI integration, cybersecurity, and continuous updates.\\ 5. Simulation and Testing:\\    – SIL/HIL methods, virtual environments and digital twins.\\ 6. Ethics and Human–Machine Collaboration:\\    – Transparency, accountability, and explainability in autonomy. 
-**Learning methods**            | to be added                                                                                                                                               || +**Type of assessment** | The prerequisite of a positive grade is a positive evaluation of module topics and presentation of practical work results with required documentation
-| **AI involvement**              | Explicit list of AI tools and application mtehods                                                                                                      |   | +**Learning methods** | **Lecture** — Cover theoretical and architectural foundations of autonomy software stacks and middleware frameworks.\\ **Lab works** — Practical exercises in ROS2, DDS, and containerised deployments; simulation of autonomy software using Gazebo or CARLA.\\ **Individual assignments** — System design and configuration management case studies applying CI/CD and risk analysis.\\ **Self-learning** — Reading standards, research papers, and exploring MOOC content on middleware and DevOps. | 
-**References to\\ literature**  to be added                                                                                                                                               || +^ **AI involvement** Used for assisting code documentation, simulation setup, performance analysis, and literature review. Students must verify generated outputs, cite AI tool usage transparently, and ensure compliance with academic integrity policies. 
-**Lab equipment**               | to be added                                                                                                                                               || +**Recommended tools and environments** | ROS2, Gazebo, CARLA, AirSim 
-**Virtual lab**                 | to be added                                                                                                                                               || +**Verification and Validation focus** |  
-**MOOC course**                 MOOC Courses hosting for SafeAVIOT-OPEN.EU Reloadedand Multiasm grants: http://edu.iot-open.eu/course/index.php?categoryid=3                          ||+**Relevant standards and regulatory frameworks** | MQTT, AUTOSARCAN, V-ModelDevOps, ISO 26262 |
  
en/safeav/curriculum/softsys-b.1758720337.txt.gz · Last modified: 2025/09/24 13:25 by larisas
CC Attribution-Share Alike 4.0 International
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0