Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
en:safeav:curriculum:maps-b [2025/09/24 13:27] – created larisasen:safeav:curriculum:maps-b [2025/11/05 09:05] (current) airi
Line 1: Line 1:
 ====== Module: Perception, Mapping, and Localization (Part 1) ====== ====== Module: Perception, Mapping, and Localization (Part 1) ======
-**Study level**                 | Bachelor 1                                                                                                                                                |+ 
-**ECTS credits**                | 3-6                                                                                                                                                       || +**Study level** | Bachelor | 
-**Study forms**                 | Hybrid or fully online                                                                                                                                    |+**ECTS credits** | 1 ECTS 
-**Module aims**                 | to be added                                                                                                                                               |+**Study forms** | Hybrid or fully online | 
-**Pre-requirements**            Motivation to study AVrecommended to have basics on programming, electronics and mechatronics                                                           |+**Module aims** | The aim of the module is to introduce perception, mapping and localisation methods for autonomous systems. The course develops students’ ability to combine data from multiple sensors to detect and interpret the environment, build maps, estimate vehicle pose in real time and handle uncertainty using modern AI-based perception and sensor fusion techniques. 
-**Learning outcomes**           After completing this module (for every topic listed below)the student:\\  - knows x\\  knows y\\  - understands z\\  can w                         |+**Pre-requirements** | Basic knowledge of linear algebraprobability and signal processing, as well as programming skills. Familiarity with control systemskinematics, Linux/ROS environments or computer vision libraries is recommended but not mandatory. 
-** Topics **                    __Topic AV1 __ (ECTS) \\ \\ __Topic AV2 __ (2 ECTS)) \\ \\ __Topic AV3 __ (2 ECTS)\\ \\ __Topic AV4 __ (1 ECTS) \\                                      |+**Learning outcomes** | **Knowledge**\\ • Describe perceptionmapping, and localization processes in autonomous systems.\\ • Explain principles of sensor fusion, simultaneous localization and mapping.\\ • Understand AI-based perception, including object detection, classification, and scene understanding.\\ **Skills**\\ • Implement basic perception and mapping algorithms using data from multiple sensors.\\ • Apply AI models to detect and classify environmental objects.\\ • Evaluate uncertainty and performance in localization and mapping using simulation tools.\\ **Understanding**\\ • Appreciate challenges of perception under varying environmental conditions.\\ • Recognize the role of data quality, calibration, and synchronization in sensor fusion.\\ • Adopt responsible practices when designing AI-driven perception modules for safety-critical applications. 
-**Type of assessment**          | The prerequisite of a positive grade is a positive evaluation of module topics and presentation of practical work results with required documentation     |+**Topics** | 1. Cameras, LiDARs, radars, and IMUs in perception and mapping.\\ 2. Sensor calibration, synchronization, and uncertainty modeling.\\ 3. Principles of multi-sensor fusion (Kalman/Particle filters, deep fusion networks).\\ 4. Object recognition and classification under variable conditions.\\ 5. SLAM, Visual Odometry, and GNSS.\\ 6. Map representation and maintenance for autonomous navigation.\\ 7. CNNs, semantic segmentation, and predictive modeling of dynamic environments.\\ 8. Perception under poor visibility, occlusions, and sensor noise.\\ 9. Integration of perception and localization pipelines in ROS2. 
-**Learning methods**            | to be added                                                                                                                                               || +**Type of assessment** | The prerequisite of a positive grade is a positive evaluation of module topics and presentation of practical work results with required documentation | 
-| **AI involvement**              | Explicit list of AI tools and application mtehods                                                                                                      |   | +**Learning methods** | **Lecture** — Theoretical background on perception, mapping, and AI-based scene understanding.\\ **Lab works** — Implementation of sensor fusion and mapping algorithms using ROS2, Python, and simulated data.\\ **Individual assignments** — Analysis of perception pipeline performance and report preparation.\\ **Self-learning** — Study of academic papers, datasets, and open-source AI perception frameworks. | 
-**References to\\ literature**  to be added                                                                                                                                               || +^ **AI involvement** AI tools can assist in code debugging, model training, and visualization of perception results. Students must cite AI-generated assistance transparently and verify the correctness of outcomes. 
-**Lab equipment**               | to be added                                                                                                                                               || +**Recommended tools and environments** | SLAM, CNN, OpenCV, PyTorch, TensorFlow, KITTI, NuScenes 
-**Virtual lab**                 | to be added                                                                                                                                               || +**Verification and Validation focus** |  
-**MOOC course**                 MOOC Courses hosting for SafeAVIOT-OPEN.EU Reloaded, and Multiasm grants: http://edu.iot-open.eu/course/index.php?categoryid=3                          ||+**Relevant standards and regulatory frameworks** | ISO 26262ISO 21448 (SOTIF) | 
 + 
  
en/safeav/curriculum/maps-b.1758720479.txt.gz · Last modified: 2025/09/24 13:27 by larisas
CC Attribution-Share Alike 4.0 International
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0