Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
en:safeav:curriculum:ctrl-m [2025/10/21 08:35] – [Table] larisasen:safeav:curriculum:ctrl-m [2025/11/05 09:19] (current) airi
Line 1: Line 1:
 ====== Module: Control, Planning, and Decision-Making (Part 2) ====== ====== Module: Control, Planning, and Decision-Making (Part 2) ======
-**Study level**                 | Master                                                                                                                                                    |+ 
-**ECTS credits**                | 1 ECTS                                                                                                                                                    |+**Study level** | Master | 
-**Study forms**                 | Hybrid or fully online                                                                                                                                    |+**ECTS credits** | 1 ECTS | 
-**Module aims**                 | to be added                                                                                                                                               |+**Study forms** | Hybrid or fully online | 
-**Pre-requirements**            Motivation to study AVrecommended to have basics on programming, electronics and mechatronics                                                           |+**Module aims** | The aim of the module is to introduce validation and verification methods for control, planning and decision-making in autonomous systems. The course develops students’ ability to design, execute and interpret simulation-based and formal testing workflows that assess safety, robustness and standards compliance of autonomy controllers. 
-**Learning outcomes**           After completing this module (for every topic listed below), the student:\\  knows x\\  knows y\\  understands z\\  can w                         |+**Pre-requirements** | Basic knowledge of control theoryoptimisation and planning algorithms, as well as programming skills or MATLAB. Familiarity with model-based design toolsAI decision-making frameworks or simulation and real-time control environments is recommended but not mandatory. 
-** Topics **                    __Topic AV1 __ (ECTS) \\ \\ __Topic AV2 __ (ECTS)) \\ \\ __Topic AV3 __ (2 ECTS)\\ \\ __Topic AV4 __ (1 ECTS) \\                                      |+**Learning outcomes** | **Knowledge**\\ • Explain simulation-based and formal validation approaches for control and planning systems.\\ • Describe the use of model-checking, reachability analysis, and verification frameworks in autonomous systems.\\ • Understand standards relevant to control and decision-making validation.\\ • Discuss trade-offs between simulation fidelity, computational efficiency, and real-time constraints.\\ **Skills**\\ • Develop and validate control and planning algorithms in simulation environments.\\ • Apply formal verification tools to analyze safety and correctness properties.\\ • Design hybrid validation workflows combining Monte Carlo simulation and symbolic reasoning.\\ • Evaluate algorithm robustness and decision safety under stochastic and adversarial conditions.\\ **Understanding**\\ • Appreciate the role of rigorous validation in certifying autonomous behaviors and AI-based decision-making.\\ • Recognize limitations of current simulation and formal verification tools in high-dimensional, data-driven systems.\\ • Adopt ethical, transparent, and standards-compliant practices in the assurance of autonomy. 
-**Type of assessment**          | The prerequisite of a positive grade is a positive evaluation of module topics and presentation of practical work results with required documentation     |+**Topics** | 1. Validation of Control and Planning Systems:\\    – System-level validation frameworks and verification-driven design.\\    – Simulation fidelity, corner-case testing, and scenario coverage.\\ 2. Simulation Environments and Tools:\\    – SIL/HIL setups, Monte Carlo analysis, and statistical validation.\\    – Multi-domain co-simulation for cyber-physical systems.\\ 3. Formal Verification and Model Checking:\\    – Safety property specification and temporal logic.\\    – Reachability analysis, invariant verification, and constraint solving.\\ 4. Hybrid and Nonlinear Systems:\\    – Modeling hybrid automata and nonlinear control loops.\\    – Formal abstraction and conservative over-approximation techniques.\\ 5. Standards and Safety Frameworks:\\    – ISO 26262, ISO 21448, IEEE 2846, and ASAM OpenSCENARIO for validation.\\ 6. Case Studies:\\    – Autonomous driving, UAV flight control, and robotic path planning validation. 
-**Learning methods**            | to be added                                                                                                                                               || +**Type of assessment** | The prerequisite of a positive grade is a positive evaluation of module topics and presentation of practical work results with required documentation | 
-| **AI involvement**              | Explicit list of AI tools and application mtehods                                                                                                      |   | +**Learning methods** | **Lecture** — Cover theory and methodologies for simulation-based and formal validation of control and planning systems.\\ **Lab works** — Implement and test controllers in virtual and hybrid environments (ROS2, MATLAB, CARLA, Scenic, CommonRoad, UPPAAL).\\ **Individual assignments** — Develop validation pipelines, perform reachability analysis, and document results.\\ **Self-learning** — Study research papers and international standards on autonomy verification and formal safety assurance. 
-**References to\\ literature**  | to be added                                                                                                                                               |+**AI involvement** | AI tools may be used to automate scenario generation, identify unsafe trajectories, and optimize validation coverage. Students must validate AI-assisted outcomes, ensure reproducibility, and cite AI involvement transparently in deliverables. 
-**Lab equipment**               to be added                                                                                                                                               |+**Recommended tools and environments** | MATLAB/Simulink, ROS2, CARLA, UPPAAL, SPIN, or CBMC 
-**Virtual lab**                 | to be added                                                                                                                                               || +^ **Verification and Validation focus**  | 
-| **MOOC course**                 MOOC Courses hosting for SafeAVIOT-OPEN.EU Reloaded, and Multiasm grants: http://edu.iot-open.eu/course/index.php?categoryid=3                          ||+**Relevant standards and regulatory frameworks** | ISO 26262ISO 21448 (SOTIF), and IEEE 2846, ASAM OpenSCENARIO |
  
en/safeav/curriculum/ctrl-m.1761035756.txt.gz · Last modified: 2025/10/21 08:35 by larisas
CC Attribution-Share Alike 4.0 International
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0