Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
en:safeav:curriculum:ctrl-b [2025/09/24 13:28] – created larisasen:safeav:curriculum:ctrl-b [2025/11/05 09:07] (current) airi
Line 1: Line 1:
 ====== Module: Control, Planning, and Decision-Making (Part 1) ====== ====== Module: Control, Planning, and Decision-Making (Part 1) ======
-**Study level**                 | Bachelor 1                                                                                                                                                |+ 
-**ECTS credits**                | 3-6                                                                                                                                                       || +**Study level** | Bachelor | 
-**Study forms**                 | Hybrid or fully online                                                                                                                                    |+**ECTS credits** | 1 ECTS 
-**Module aims**                 | to be added                                                                                                                                               |+**Study forms** | Hybrid or fully online | 
-**Pre-requirements**            Motivation to study AVrecommended to have basics on programming, electronics and mechatronics                                                           |+**Module aims** | The aim of the module is to introduce control and planning methods for autonomous systems. The course develops students’ ability to design and analyse feedback control, motion planning and decision-making algorithms that generate safe and reliable vehicle behaviour in dynamic environments, using both classical and modern AI-based approaches. 
-**Learning outcomes**           After completing this module (for every topic listed below)the student:\\  - knows x\\  - knows y\\  understands z\\  can w                         |+**Pre-requirements** | Basic knowledge of linear algebradifferential equations and control theory, as well as programming skills. Familiarity with system dynamicsrobotics or numerical tools (e.g. MATLAB/Simulink) is recommended but not mandatory. 
-** Topics **                    __Topic AV1 __ (ECTS) \\ \\ __Topic AV2 __ (ECTS)) \\ \\ __Topic AV3 __ (2 ECTS)\\ \\ __Topic AV4 __ (1 ECTS) \\                                      |+**Learning outcomes** | **Knowledge**\\ • Explain classical control principles and their application to vehicle dynamics.\\ • Describe AI-based control methods, including reinforcement learning and neural network controllers.\\ • Understand motion planning and behavioral algorithms\\ • Discuss safety verification, validation, and certification issues for autonomous control systems.\\ **Skills**\\ • Designsimulate, and tune classical controllers for trajectory tracking and stabilization.\\ • Implement basic reinforcement learning or hybrid control strategies in simulation environments.\\ • Develop motion planning pipelines integrating perception, planning, and control layers.\\ **Understanding**\\ • Recognize trade-offs between transparency, performance, and adaptability in control architectures.\\ • Evaluate robustness, explainability, and ethical implications in AI-driven control.\\ • Appreciate interdisciplinary approaches to achieve safe and reliable autonomous operation. 
-**Type of assessment**          | The prerequisite of a positive grade is a positive evaluation of module topics and presentation of practical work results with required documentation     |+**Topics** | 1. Classical Control Strategies:\\    – Feedback control fundamentals, PID design and tuning, LQR, Sliding Mode Control.\\    – Model Predictive Control and real-time optimization.\\ 2. AI-Based Control Strategies:\\    – Reinforcement learning for control, supervised imitation learning.\\    – Neural network controllers and hybrid architectures.\\ 3. Integration and Safety:\\    – Verification, validation, and certification of control systems.\\    – Robustness, interpretability, and failure handling.\\ 4. Motion Planning and Behavioral Algorithms:\\    – FSMs, Behavior Trees, and rule-based systems.\\    – Planning methods: A*, D*, RRT, RRT*, and MPC-based trajectory generation.\\    – Predictive and optimization-based planning for dynamic environments.\\ 5. Future Trends:\\    – Explainable AI control, safe RL, and human-like behavioral models. 
-**Learning methods**            | to be added                                                                                                                                               || +**Type of assessment** | The prerequisite of a positive grade is a positive evaluation of module topics and presentation of practical work results with required documentation | 
-| **AI involvement**              | Explicit list of AI tools and application mtehods                                                                                                      |   | +**Learning methods** | **Lecture** — Introduce theoretical and mathematical foundations of classical and AI-based control strategies.\\ **Lab works** — Implement and compare controllers (PID, LQR, RL) and motion planners (A*, RRT) using simulation tools such as low-fidelity planning simulators, or MATLAB/Simulink.\\ **Individual assignments** — Design a control or planning pipeline and evaluate safety/performance trade-offs.\\ **Self-learning** — Independent exploration of open-source control frameworks and reading of selected research literature. | 
-**References to\\ literature**  | to be added                                                                                                                                               |+^ **AI involvement** | Students may use AI tools to generate code templates, optimize control parameters, or analyze planning performance. All AI-assisted work must be reviewed, validated, and cited properly in accordance with academic integrity standards. 
-**Lab equipment**               | to be added                                                                                                                                               || +**Recommended tools and environments** | FSM, Behavior Trees, A*, RRT, MPC 
-**Virtual lab**                 | to be added                                                                                                                                               || +**Verification and Validation focus** |  
-**MOOC course**                 MOOC Courses hosting for SafeAVIOT-OPEN.EU Reloadedand Multiasm grants: http://edu.iot-open.eu/course/index.php?categoryid=3                          ||+**Relevant standards and regulatory frameworks** | ISO 26262ISO 21448 (SOTIF)SAE J3016 |
  
en/safeav/curriculum/ctrl-b.1758720531.txt.gz · Last modified: 2025/09/24 13:28 by larisas
CC Attribution-Share Alike 4.0 International
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0