Pentium III is very similar to Pentium II. The main enhancement is the addition of the Streaming SIMD Extensions (SSE) instruction set to accelerate SIMD floating point calculations. Due to the enhancement of the production process, it was also possible to increase the clocking frequency to the range of 400 MHz to 1.4 GHz. | Pentium III is very similar to Pentium II. The main enhancement is the addition of the Streaming SIMD Extensions (SSE) instruction set to accelerate SIMD floating point calculations. Due to the enhancement of the production process, it was also possible to increase the clocking frequency to the range of 400 MHz to 1.4 GHz. |
Pentium 4 is the last 32-bit processor developed by Intel. Some late models also implement 64-bit enhancement. It is based on NetBurst architecture, which was developed as an improvement to P6 architecture. The important modification is a movement of the instruction cache from the input to the output of the instruction decoder. As a result, the cache, named trace cache, stores micro-operations instead of instructions. To increase the market impact, Intel decided to enlarge the number of pipeline stages, using the term "hyperpipelining" to describe the strategy of creating a very deep pipeline. A deep pipeline could lead to higher clock speeds, and Intel used it to build the marketing strategy. The Pentium 4's pipeline in the initial model is significantly deeper than that of its predecessors, having 20 stages. The Pentium 4 Prescott processor even has a pipeline of 31 stages. Operating frequency ranges from 1.3 GHz to 3.8 GHz. Intel also implemented the Hyper Threading technology in the Pentium 4 HT version to enable two virtual (logical) cores in one physical processor, which share the workload between them when possible. With Pentium 4, Intel returned to the single chip package for both the processor core and L2 cache. Pentium 4 extends the instruction set with SSE2 instructions, and Pentium 4 Prescott with SSE3. NetBurst microarchitecture suffered from high heat emission, causing problems in heat dissipation and cooling. | Pentium 4 is the last 32-bit processor developed by Intel. Some late models also implement 64-bit enhancement. It is based on NetBurst architecture, which was developed as an improvement to P6 architecture. The important modification is a movement of the instruction cache from the input to the output of the instruction decoder. As a result, the cache, named trace cache, stores micro-operations instead of instructions. To increase the market impact, Intel decided to enlarge the number of pipeline stages, using the term "hyperpipelining" to describe the strategy of creating a very deep pipeline. A deep pipeline could lead to higher clock speeds, and Intel used it to build the marketing strategy. The Pentium 4's pipeline in the initial model is significantly deeper than that of its predecessors, having 20 stages. The Pentium 4 Prescott processor even has a pipeline of 31 stages. Operating frequency ranges from 1.3 GHz to 3.8 GHz. Intel also implemented the Hyper Threading technology in the Pentium 4 HT version to enable two virtual (logical) cores in one physical processor, which share the workload between them when possible. With Pentium 4, Intel returned to the single chip package for both the processor core and L2 cache. Pentium 4 extends the instruction set with SSE2 instructions, and Pentium 4 Prescott with SSE3. NetBurst architecture suffered from high heat emission, causing problems in heat dissipation and cooling. |