Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
en:iot-open:introduction:introduction_to_iot_communication_and_protocols [2019/05/24 15:47] irena.skardaen:iot-open:introduction:introduction_to_iot_communication_and_protocols [2020/07/20 09:00] (current) – external edit 127.0.0.1
Line 1: Line 1:
 +=====  ===== 
 +<box #5374d5></box>
 +<box #5374d5></box>
 ===== Embedded Systems Communication Protocols ===== ===== Embedded Systems Communication Protocols =====
 +<box #5374d5></box>
 +<box #5374d5></box>
 +
 Understanding the principals of communication are essential for further reading on hardware and programming. Most microcontrollers (including SoCs) can communicate in the protocols juxtaposed below right "out of the box". Interfaces can be implemented in hardware or (recently) in software. Some microcontrollers may require an external, dedicated protocol converter (a chip or a module). Understanding the principals of communication are essential for further reading on hardware and programming. Most microcontrollers (including SoCs) can communicate in the protocols juxtaposed below right "out of the box". Interfaces can be implemented in hardware or (recently) in software. Some microcontrollers may require an external, dedicated protocol converter (a chip or a module).
  
Line 80: Line 86:
 ===1-Wire Protocol Description=== ===1-Wire Protocol Description===
 Within the MicroLAN, there is always one master device, which may be a PC or a microcontroller unit. The master always initiates activity on the bus to avoid collisions on the network chain. If a collision occurs, the master device retries the communication. In the 1-Wire network, many devices can share the same bus line. To identify devices in the MicroLAN, each connected device has a unique 64-bit ID number. The least significant byte of the ID number defines the type of the device (temperature, voltage etc. sensors). The most significant byte represents a standard 8-bit CRC.  Within the MicroLAN, there is always one master device, which may be a PC or a microcontroller unit. The master always initiates activity on the bus to avoid collisions on the network chain. If a collision occurs, the master device retries the communication. In the 1-Wire network, many devices can share the same bus line. To identify devices in the MicroLAN, each connected device has a unique 64-bit ID number. The least significant byte of the ID number defines the type of the device (temperature, voltage etc. sensors). The most significant byte represents a standard 8-bit CRC. 
-The 1-Wire protocol description contains several broadcast commands and commands used to address the selected device. The master sends a selection command, then the address of a slave selected device. This way, the next command is executed only by the addressed device. The 1-wire bus implements enumeration procedure which allows the master to get information about ID numbers of all connected slave devices to the MicroLAN network. Device address includes the device type, and a CRC allows to identify what type of slaves are currently connected to the network chain for inventory purposes. The 64-bit address space is searched as a binary tree. It allows to find up to 75 devices per second. +The 1-Wire protocol description contains several broadcast commands and commands used to address the selected device. The master sends a selection command, then the address of a slave selected device. This way, the next command is executed only by the addressed device. The 1-Wire bus implements enumeration procedure which allows the master to get information about ID numbers of all connected slave devices to the MicroLAN network. Device address includes the device type, and a CRC allows to identify what type of slaves are currently connected to the network chain for inventory purposes. The 64-bit address space is searched as a binary tree. It allows to find up to 75 devices per second. 
  
 The physical implementation of the 1-Wire network is based on an open drain master device connected to one or more open drain slaves. One single pull-up resistor for all devices pull the bus up to 3/5 V and can be used to power the slave devices. 1-Wire communication starts when a master or slave sets the bus to low voltage (connects the pull-up resistor to ground through its output MOSFET). Typical data speed of the 1-Wire interface is about 16.3 kbit/s.  The physical implementation of the 1-Wire network is based on an open drain master device connected to one or more open drain slaves. One single pull-up resistor for all devices pull the bus up to 3/5 V and can be used to power the slave devices. 1-Wire communication starts when a master or slave sets the bus to low voltage (connects the pull-up resistor to ground through its output MOSFET). Typical data speed of the 1-Wire interface is about 16.3 kbit/s. 
en/iot-open/introduction/introduction_to_iot_communication_and_protocols.1558712870.txt.gz · Last modified: 2020/07/20 09:00 (external edit)
CC Attribution-Share Alike 4.0 International
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0