DC motor control. Movement of a robot is simulated, by using DC motor and touch sensors. Touch sensors are the buttons S1, S2 and S3 of the User Interface module. The motor is controlled by pressing the buttons. S1 and S2 pressed separately stops the engine for two seconds and then start motor again. If both buttons are pressed, then the motor is stopped until the buttons are released. (For a robot, similar scheme should be implemented to control two separate motor).
DC motor accelerates when S1 is pressed down and holds achieved speed when the button is released. By holding S2 pressed down, the motor decelerates smoothly. By pressing button S3, the motor stops instantly.
Servo motor, the servo motor is controlled via the buttons of the User Interface module. By pressing down S1 the servomotor moves one step to the right. By pressing down S3, the servo motor moves one step to the left and S2 makes the servo motor to move to the initial (middle) position. The position of the servo motor is displayed live on the 7 segment display (each number corresponds to 10 degrees of the turn: middle position equals 5).
Radar, UH sensor based radar is simulated. Sensor is installed to the lever of the servo motor. The lever of servo motor is moving constantly form one extreme position to the other. If there happens to be an object in closer range than 0,5 meters of the sensor, then the servo motor is stopped for 5 seconds and by signaling a LED that detection of the object is announced. After 5 seconds of flashing of the LED, scanning continues.
Stepper motor, after each pressing on the buttons S1 and S3 it rotates 50 steps, accordingly clock wise and anti clock wise.